56 research outputs found

    Retournement temporel : application aux réseaux mobiles

    Get PDF
    This thesis studies the time reversal technique to improve the energy efficiency of future mobile networks and reduce the cost of future mobile devices. Time reversal technique consists in using the time inverse of the propagation channel impulse response (between a transceiver and a receiver) as a prefilter. Such pre-filtered signal is received with a stronger power (this is spatial focusing) and with a strong main echo, relatively to secondary echoes (this is time compression). During a previous learning phase, the transceiver estimates the channel by measuring the pilot signal emitted by the receiver. Space-time focusing is obtained only at the condition that the propagation remains identical between the learning phase and the data transmission phase: this is the ‘channel reciprocity’ condition. Numerous works show that spatial focusing allows for the reduction of the required transmit power for a given target received power, on the one hand, and that time compression allow for the reduction of the required complexity at the receiver side to handle multiple echoes, on the other hand. However, studies on complexity reduction are limited to ultra wideband. Some works of this thesis (based on simulations and experimental measurements) show that, for bands which are more typical for future networks (a carrier frequency of 1GHz and a spectrum of 30 MHz to 100 MHz), thanks to time reversal, a simple receiver and a mono-carrier signal are sufficient to reach high data rates. Moreover, the channel reciprocity condition is not verified in two scenarios which are typical from mobile networks. Firstly, in most European mobile networks, the frequency division duplex mode is used. This mode implies that the transceiver and the receiver communicate on distinct carriers, and therefore through different propagation channels. Secondly, when considering a receiver on a moving connected vehicle, the transceiver and the receiver communicate one with each other at distinct instants, corresponding to distinct positions of the vehicles, and therefore through different propagation channels. Some works of this thesis propose solutions to obtain space-time focusing for these two scenarios. Finally, some works of this thesis explore the combination of time reversal with other recent signal processing techniques (spatial modulation, on the one hand, a new multi-carrier waveform, on the other hand), or new deployment scenarios (millimeter waves and large antenna arrays to interconnect the nodes of an ultra dense network) or new applications (guidance and navigation) which can be envisaged for future mobile networks.Cette thèse étudie la technique dite de ‘Retournement Temporel’ afin d’améliorer l’efficacité énergétique des futurs réseaux mobiles d’une part, et réduire le coût des futurs terminaux mobiles, d’autre part. Le retournement temporel consiste à utiliser l’inverse temporel de la réponse impulsionnelle du canal de propagation entre un émetteur et un récepteur pour préfiltrer l’émission d’un signal de données. Avantageusement, le signal ainsi préfiltré est reçu avec une puissance renforcée (c’est la focalisation spatiale) et un écho principal qui est renforcé par rapport aux échos secondaires (c’est la compression temporelle). Lors d’une étape préalable d’apprentissage, l’émetteur estime le canal en mesurant un signal pilote provenant du récepteur. La focalisation spatiotemporelle n’est obtenue qu’à condition que la propagation demeure identique entre la phase d’apprentissage et la phase de transmission de données : c’est la condition de ‘réciprocité du canal’. De nombreux travaux montrent que la focalisation spatiale permet de réduire la puissance émise nécessaire pour atteindre une puissance cible au récepteur d’une part, et que la compression temporelle permet de réduire la complexité du récepteur nécessaire pour gérer l’effet des échos multiples, d’autre part. Cependant, les études sur la réduction de la complexité du récepteur se limitent à l’ultra large bande. Des travaux de cette thèse (basés sur des simulations et des mesures expérimentales) montrent que pour des bandes de fréquences plus typiques des futurs réseaux mobiles (fréquence porteuse à 1GHz et spectre de 30 MHz à 100 MHz), grâce au retournement temporel, un récepteur simple et un signal monoporteuse suffisent pour atteindre de hauts débits. En outre, la condition de réciprocité du canal n’est pas vérifiée dans deux scénarios typiques des réseaux mobiles. Tout d’abord, dans la plupart des réseaux mobiles européens, le mode de duplex en fréquence est utilisé. Ce mode implique que l’émetteur et le récepteur communiquent l’un avec l’autre sur des fréquences porteuses distinctes, et donc à travers des canaux de propagations différents. De plus, lorsqu’on considère un récepteur sur un véhicule connecté en mouvement, l’émetteur et le récepteur communiquent l’un avec l’autre à des instants distincts, correspondants à des positions distinctes du véhicule, et donc à travers des canaux de propagations différents. Des travaux de cette thèse proposent des solutions pour obtenir la focalisation spatio-temporelle dans ces deux scenarios. Enfin, des travaux de la thèse explorent la combinaison du retournement temporel avec d’autres techniques de traitement de signal récentes (la modulation spatiale, d’une part, et une nouvelle forme d’onde multiporteuse, d’autre part), ou des scenarios de déploiement nouveaux (ondes millimétriques et très grands réseaux d’antennes pour inter-connecter les noeuds d’un réseau ultra dense) ou de nouvelles applications (guidage et navigation) envisageables pour les futurs réseaux mobiles

    Electromagnetic Field Exposure Avoidance thanks to Non-Intended User Equipment and RIS

    Get PDF
    On the one hand, there is a growing demand for high throughput which can be satisfied thanks to the deployment of new networks using massive multiple-input multiple-output (MIMO) and beamforming. On the other hand, in some countries or cities, there is a demand for arbitrarily low electromagnetic field exposure (EMFE) of people not concerned by the ongoing communication, which slows down the deployment of new networks. Recently, it has been proposed to take the opportunity, when designing the future 6th generation (6G), to offer, in addition to higher throughput, a new type of service: arbitrarily low EMFE. Recent works have shown that a reconfigurable intelligent surface (RIS), jointly optimized with the base station (BS) beamforming can improve the received throughput at the desired location whilst reducing EMFE everywhere. In this paper, we introduce a new concept of a non-intended user (NIU). An NIU is a user of the network who requests low EMFE when he/she is not downloading/uploading data. An NIU lets his/her device, called NIU equipment (NIUE), exchange some control signaling and pilots with the network, to help the network avoid exposing NIU to waves that are transporting data for another user of the network: the intended user (IU), whose device is called IU equipment (IUE). Specifically, we propose several new schemes to maximize the IU throughput under an EMFE constraint at the NIU (in practice, an interference constraint at the NIUE). Several propagation scenarios are investigated. Analytical and numerical results show that proper power allocation and beam optimization can remarkably boost the EMFE-constrained system's performance with limited complexity and channel information.Comment: 6 pages, 6 figures. Accepted in Globecom 2022 Worksho

    Experimental Demonstration of 3D Reflected Beamforming at sub6GHz thanks to Varactor Based Reconfigurable Intelligent Surface

    Full text link
    Reconfigurable intelligent surface (RIS) is a promising solution to boost coverage sustainably by reflecting waves from a transmitter to a receiver and acting as a low-power and passive relay. In this paper, for the first time, we demonstrate experimentally that a reconfigurable intelligent surface designed for sub6GHz, and using varactor technology, can perform three-dimensional reflective beamforming. This result is achieved with a RIS prototype of 984 unit-cells, thanks to a compact control circuit individually addressing and configuring the voltage of each unit-cell, with a distinct voltage. To our knowledge, this prototype configures 17 to 70 times more distinct voltages than in the state-of-the-art. The experimental results in an indoor environment show a 10 dB gain. They also show, for the first time, that producing such a new prototype is feasible with minimal energy footprint and environmental impact, thanks to refurbishing. Indeed, a reflectarray antenna originally designed for three-dimensional beamforming has been turned into a RIS

    Electromagnetic Field Exposure Avoidance thanks to Non-Intended User Equipment and RIS

    Get PDF
    On the one hand, there is a growing demand for high throughput which can be satisfied thanks to the deployment of new networks using massive multiple-input multiple-output (MIMO) and beamforming. On the other hand, in some countries or cities, there is a demand for arbitrarily low electromagnetic field exposure (EMFE) of people not concerned by the ongoing communication, which slows down the deployment of new networks. Recently, it has been proposed to take the opportunity, when designing the future 6th generation (6G), to offer, in addition to higher throughput, a new type of service: arbitrarily low EMFE. Recent works have shown that a reconfigurable intelligent surface (RIS), jointly optimized with the base station (BS) beamforming can improve the received throughput at the desired location whilst reducing EMFE everywhere. In this paper, we introduce a new concept of a non-intended user (NIU). An NIU is a user of the network who requests low EMFE when he/she is not downloading/uploading data. An NIU lets his/her device, called NIU equipment (NIUE), exchange some control signaling and pilots with the network, to help the network avoid exposing NIU to waves that are transporting data for another user of the network: the intended user (IU), whose device is called IU equipment (IUE). Specifically, we propose several new schemes to maximize the IU throughput under an EMFE constraint at the NIU (in practice, an interference constraint at the NIUE). Several propagation scenarios are investigated. Analytical and numerical results show that proper power allocation and beam optimization can remarkably boost the EMFE-constrained system\u27s performance with limited complexity and channel information

    Predictor Antenna: A Technique to Boost the Performance of Moving Relays

    Get PDF
    In future wireless systems, a large number of users may access the networks via moving relays (MRs) installed on top of vehicles. One of the main challenges of MRs is rapid channel variation which may make channel estimation, and its following procedures, difficult. To address these issues, various schemes are designed, among which predictor antenna (PA) is a candidate. The PA setup refers to a system with two (sets of) antennas on top of a vehicle, where the PA(s) positioned in front of the vehicle is(are) utilized to predict the channel state information required for data transmission to the receive antennas (RAs) aligned behind the PA. In this paper, we introduce the concept and the potentials of PA systems. Moreover, summarizing the field trials for PAs and the 3GPP attempts on (moving) relays, we compare the performance of different PA and non-PA methods for vehicle communications in both urban and rural areas with the PA setup backhauled through terrestrial or satellite technology, respectively. As we show, with typical parameter settings and vehicle speeds, a single-antenna PA-assisted setup can boost the backhaul throughput of MRs, compared to state-of-the-art open-loop schemes, by up to 50%

    Zero-Energy-Device for 6G: First Real-Time Backscatter Communication thanks to the Detection of Pilots from an Ambient Commercial Cellular Network

    Full text link
    Ambient backscatter communication technology (AmBC) and a novel device category called zero-energy devices (ZED) have recently emerged as potential components for the forthcoming 6th generation (6G) networks. A ZED communicates with a smartphone without emitting additional radio waves, by backscattering ambient waves from base stations. Thanks to its very low consumption, a ZED powers itself by harvesting ambient light energy. However, the time variations of data traffic in cellular networks prevents AmBC to work properly. Recent works have demonstrated experimentally that a backscatter device could be detected by listening only ambient pilot signals (which are steady) instead of the whole ambient signal (which is bursty) of 4G. However, these experiments were run with a 4G base station emulator and a bulky energy greedy backscatter device. In this paper, for the first time, we demonstrate real-time AmBC on the field, with Orange commercial 4G network as ambient source and Orange Zero-Energy Device.Comment: 3 pages, 7 figures , 6Get202

    Spatial modulation based on reconfigurable antennas: performance evaluation by using the prototype of a reconfigurable antenna

    Get PDF
    In this paper, we study the performance of spatial modulation based on reconfigurable antennas. Two main contributions are provided. We introduce an analytical framework to compute the error probability, which is shown to be accurate and useful for system optimization. We design and implement the prototype of a reconfigurable antenna that is specifically designed for application to spatial modulation and that provides multiple radiation patterns that are used to encode the information bits. By using the measured antenna radiation patterns, we show that spatial modulation based on reconfigurable antennas works in practice and that its performance can be optimized by appropriately selecting the radiation patterns to use for a given data rate
    • …
    corecore